Natural Language Processing Roadmap

Natural Language Processing Roadmap

Introduction

This roadmap gives clear steps for students and beginners who want to learn NLP. The goal is simple learning with practical actions. Next, you move from Python basics to transformers then to real projects.

هاد ال roadmap غادي تعاونك تبدأ ف NLP ب خطوات واضحين و بلا تعقيد. غادي تمشي من Python حتى ال transformers.

1. Learn Python Basics

NLP depends on Python. Work with strings. Write simple scripts. Process text files.

What to Learn

  • Data types
  • Functions
  • File reading and writing
  • Regex basics

تعلم Python basics. خدم ب strings و regex ودير سكريبتات كيقراو و يكتبو النصوص.

2. Study Core Math

NLP needs light math. Focus on basic linear algebra, probability, and statistics.

Important Points

  • Vectors and matrices
  • Distributions
  • Mean and variance
  • Conditional probability

الرياضيات هنا بسيطة. تعلم vectors و distributions و الاحصائيات الأساسية.

3. Learn NLP Fundamentals

Start with basic text processing. Clean text. Remove noise. Tokenize. Normalize. Extract features.

Key Concepts

  • Tokenization
  • Stemming
  • Lemmatization
  • Stopword filtering
  • N grams

فهم أساسيات NLP. دير tokenization. حدف stopwords. دير normalization.

4. Learn Traditional NLP Models

Before transformers, learn traditional models. They help build intuition.

Algorithms to Study

جرب TF IDF و Naive Bayes و logistic regression ف نصوص صغار.

5. Learn Word Embeddings

Embeddings give meaning to words. Study distributed representations.

What to Cover

  • Word2Vec
  • GloVe
  • FastText
  • Cosine similarity

تعلم Word2Vec و GloVe و FastText و استعمل cosine similarity.

6. Learn Neural NLP

Deep learning gives stronger NLP models. Learn networks that handle sequences.

Core Models

  • Feedforward networks for text
  • RNN
  • LSTM
  • GRU

تعلم RNN و LSTM و GRU وكيفاش كيخدمو مع النصوص.

7. Learn Attention and Transformers

Transformers drive modern NLP. Study attention. Study encoder and decoder blocks. Learn fine tuning.

Focus Areas

  • Self attention
  • Positional encoding
  • Encoder blocks
  • Decoder blocks
  • Fine tuning transformer models

تعلم attention و positional encoding و encoder o decoder. هادو الأساس د transformers.

8. Work With NLP Frameworks

Use real NLP libraries. They improve workflow and speed.

Useful Tools

  • PyTorch
  • TensorFlow
  • Hugging Face Transformers
  • spaCy
  • NLTK

استعمل Hugging Face و spaCy و PyTorch ف مشاريعك.

9. Build Real Projects

Apply skills with real datasets. Train models. Debug code. Improve accuracy.

Project Ideas

  • Sentiment analysis
  • Spam detection
  • Named entity recognition
  • Machine translation
  • Question answering

دير sentiment analysis ولا spam detection باش تطبق المفاهيم.

10. Learn Evaluation and Deployment

Study evaluation. Export models. Build APIs. Deploy NLP systems.

Key Metrics

  • Accuracy
  • Precision
  • Recall
  • F1 score
  • BLEU score for translation

قيم الموديل ب accuracy و recall و F1. و تعلم BLEU للترجمة.

Syntax or Model Structure Example

Below is a simple example showing how to tokenize text with NLTK.

import nltk
from nltk.tokenize import word_tokenize

text = "Natural Language Processing is important"
tokens = word_tokenize(text)

print(tokens)

هادا مثال بسيط باش دير tokenization باستعمال NLTK.

Exercises

  • Write a Python script that loads and prints a text file.
  • Create a regex that finds all email addresses in text.
  • Tokenize a paragraph and count word frequency.
  • Train a TF IDF model on a small dataset.
  • Train a Naive Bayes classifier for sentiment.
  • Generate word embeddings with Word2Vec.
  • Build a simple RNN for text.
  • Fine tune a transformer for classification.
  • Evaluate a translation model with BLEU.
  • Deploy an NLP model with a small API.

Conclusion

Follow the roadmap step by step. Train models. Test ideas. Build strong NLP projects.

تبع الخطوات و خدم بكثرة باش تطور مهاراتك ف NLP.

Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.

Blog Archive