Feature Engineering for AI Beginners

Feature Engineering for AI Beginners

What Is Feature Engineering

Feature engineering is the process of creating inputs that help a model learn patterns. Raw data often needs transformation. Strong features improve accuracy and stability.

Why feature engineering is important

  • It improves model performance.
  • It reduces noise in the dataset.
  • It highlights useful patterns.
  • It prepares data for algorithms that expect structured inputs.

Main feature engineering actions

  • Create new columns from existing ones.
  • Encode text or categorical data.
  • Scale numerical values.
  • Normalize distributions.
  • Extract time features like hour or weekday.
  • Group rare categories.

Simple Python example

import pandas as pd

df = pd.read_csv("data.csv")

# Create a new feature
df["bmi"] = df["weight"] / (df["height"] ** 2)

# Encode category
df = pd.get_dummies(df, columns=["city"])

# Scale a value
df["age_scaled"] = (df["age"] - df["age"].mean()) / df["age"].std()

Tips for strong features

  • Use simple transformations.
  • Check correlation between new features and the target.
  • Remove features that bring no value.
  • Keep track of each transformation.
  • Test features with a baseline model.

Conclusion

Feature engineering creates clear inputs for machine learning tasks. It supports AI students and practitioners in reaching stable results. It forms a core skill in every project.


Feature Engineering b Darija

Feature engineering huwa lprocess li katsayeb inputs jdadin bach lmodel ytfham data mzyan. Data raw kats7taj tbdil. Features mqaddmin kayrfa3o performance dyal model.

Ash bhal faida dyalo

  • Kayhssen accuracy.
  • Kayn9i noise.
  • Kaybayyen patterns mhemmin.
  • Kayywajjid data l algorithms.

Steps m3roufin f feature engineering

  • Tsayeb columns jdadin.
  • Encode text w categories.
  • Scale values numeriques.
  • Normalize distributions.
  • Tsayeb time features bhal hour w weekday.
  • Tjam3 categories nqallin.

Exemple b Python

import pandas as pd

df = pd.read_csv("data.csv")

df["bmi"] = df["weight"] / (df["height"] ** 2)

df = pd.get_dummies(df, columns=["city"])

df["age_scaled"] = (df["age"] - df["age"].mean()) / df["age"].std()

Tips

  • Khdem b steps s7la.
  • Chouf correlation m3a target.
  • Hayed features li mafihom faida.
  • Sjjel kull bdl.
  • Testi features b model basique.

Khitam

Feature engineering kaywajjid inputs wadiin. Kay3awn talaba w practitioners f AI. Kayb9a skill mhemma f kol project.

Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.

Blog Archive