Introduction
This guide explains the difference between AI agents and agentic AI. The goal is simple understanding. Next, you follow clear definitions, workflows, and examples.
هاد الشرح كيبين الفرق بين agent و agentic AI بطريقة واضحة. غادي تشوف التعريف، الاستعمال، و workflow ديال كل واحد.
Core Concepts Explained
An AI agent runs a short loop of sensing, processing, and acting. Agentic AI runs a long loop with planning, feedback, and correction. The second one focuses on goals, not single actions.
الـ agent كيخدم خطوة بسيطة. الـ agentic AI كيخدم process كامل فيه planning و feedback.
What Is an AI Agent
An AI agent is a program that takes input from an environment and returns an action. The pattern stays fixed and simple.
- Sense the environment
- Process the input
- Return an action
AI agents handle single tasks. They follow instructions without extended reasoning.
Examples of Simple Agents
- Chatbots with fixed rules
- Recommendation engines
- Basic automation scripts
What Is Agentic AI
Agentic AI goes beyond simple reactions. It understands goals. It builds plans. It breaks goals into tasks. It observes results and corrects the next step.
Agentic AI uses reasoning loops. It adapts when errors appear.
Key Features of Agentic AI
- Goal driven behavior
- Planning and task decomposition
- Feedback loops
- Autonomous execution
- Self correction
Main Differences
| Aspect | AI Agent | Agentic AI |
|---|---|---|
| Purpose | Single task | Goal with multiple tasks |
| Reasoning | Limited | Planning and reflection |
| Autonomy | Low | High |
| Adaptation | Low | Ongoing correction |
| Workflow | One loop | Multi step chain |
Simple Flow of Each System
Agent Flow
- Input
- Process
- Action
Agentic AI Flow
- Understand goal
- Plan tasks
- Execute steps
- Review output
- Fix errors
- Reach result
Where They Are Used
AI Agents
- Customer support bots
- Email sorting tools
- Simple automation systems
Agentic AI
- Research assistants
- Code generation workflows
- Business automation chains
- Multi step data processing
Agents vs Agentic in Moroccan Darija
ف AI، كاين فرق كبير بين agent و agentic system. الـ agent كيخدم step wahda. الـ agentic AI كيخدم workflow كامل فيه planning و feedback و correction.
Shno Howa Agent
- Kaydkhl input
- Kay7seb
- Kaydir action wahda
Shno Howa Agentic AI
- Kayfhem l goal
- Kaykhtat tasks
- Kaydir steps m3a feedback
- Kayss7 l errors
Far9 Sarih
- Agent simple
- Agentic kayplanning
- Agent kay7der step wahda
- Agentic kay7der workflow kamel
Syntax or Model Structure Example
Below is a small Python example showing a very simple agent vs a simple agentic loop.
# Simple agent
def agent(input_data):
if input_data == "spam":
return "Filter"
return "Allow"
print(agent("spam"))
# Simple agentic loop
def agentic(goal):
steps = ["plan", "execute", "review", "fix"]
log = []
for step in steps:
log.append(f"{step} for {goal}")
return log
print(agentic("analyze report"))
مثال بسيط يبين الفرق بين agent و agentic workflow.
Exercises
- Write a one sentence definition of an AI agent.
- List three features of agentic AI.
- Explain why an agentic system needs feedback loops.
- Create a three step plan for an agentic system that organizes files.
- Write a Python function that simulates a simple agent.
- Modify the example code to add a new step in the agentic loop.
- List cases where agents work well.
- List cases where agentic AI works better.
- Describe one risk of using agentic AI in complex workflows.
- Design a small agentic workflow for data cleaning.
Conclusion
AI agents react. Agentic AI plans. The difference shapes modern AI systems. Working with both helps you understand classic and modern AI behavior.
ال agent كيخدم responses بسيطة. الـ agentic AI كيخطط و كيصلح. وهنا كيبان التطور الكبير ف AI.