Linear and Logistic Regression in Machine Learning

Linear and Logistic Regression in Machine Learning

Introduction

This guide explains linear regression and logistic regression with simple steps. Both models belong to supervised learning. Next, you move from definitions to structure, examples, and exercises.

هاد الشرح كيعطيك linear regression و logistic regression بطريقة سهلة. بجوج داخلين ف supervised learning. غادي تشوف التعاريف، الخدمة، و الأمثلة.

Core Concepts Explained

Linear regression predicts numbers. Logistic regression predicts classes. The first model draws a line. The second model outputs probabilities.

Linear regression كيحسب رقم. Logistic regression كيعطي class. Linear كيخدم بخط. Logistic كيخدم ب probability.

1. What Is Linear Regression

Linear regression predicts continuous values. It builds a line that fits input data.

Goal

Predict a numeric output.

How It Works

  • The model receives input features
  • Each feature multiplies by a weight
  • The model sums all weighted values
  • The output becomes a number

Use Cases

  • House price prediction
  • Sales forecasting
  • Temperature prediction

Key Points

  • Output is numeric
  • Training uses mean squared error
  • Fits a straight line for simple cases

2. What Is Logistic Regression

Logistic regression predicts labels. It outputs a probability. It picks the class with the highest score.

Goal

Predict a class label.

How It Works

  • The model receives input features
  • A score is computed
  • A sigmoid or softmax function transforms the score
  • The output becomes a probability

Use Cases

  • Spam detection
  • Disease classification
  • Customer churn prediction

Key Points

  • Output is a class
  • Training uses cross entropy
  • Supports binary and multi class tasks

Main Differences

Aspect Linear Regression Logistic Regression
Output Number Class
Loss MSE Cross entropy
Activation No activation Sigmoid or softmax
Task Regression Classification

Syntax or Model Structure

Linear Regression (Python)

from sklearn.linear_model import LinearRegression
import pandas as pd

data = pd.read_csv("data.csv")
X = data[["feature1", "feature2"]]
y = data["target"]

model = LinearRegression()
model.fit(X, y)

print(model.predict([[3.2, 7.1]]))

Logistic Regression (Python)

from sklearn.linear_model import LogisticRegression
import pandas as pd

data = pd.read_csv("data.csv")
X = data[["feature1", "feature2"]]
y = data["label"]

model = LogisticRegression()
model.fit(X, y)

print(model.predict([[1.5, 4.0]]))

Linear and Logistic Regression in Moroccan Darija

Linear Regression

Linear regression كيعطي رقم. كيحاول يرسم خط بين inputs و output.

Logistic Regression

Logistic regression كيعطي class. كيدير probability و كياخد أحسن اختيار.

Far9 Sarih

  • Linear regression كيعطي number
  • Logistic regression كيعطي class
  • Linear كيستعمل MSE
  • Logistic كيستعمل cross entropy

Multiple Practical Examples

1. Linear Regression for Price Prediction

predicted_price = model.predict([[120, 3]])
print(predicted_price)

2. Logistic Regression for Spam Classification

email = [[0.8, 0.3]]
print(model.predict(email))

Explanation of Each Example

In the first example, the model predicts a continuous price. In the second example, the model assigns a label: spam or not spam.

ف المثال الأول الموديل كيخرج رقم. ف الثاني كيعطي class.

Exercises

  • Write one sentence explaining linear regression.
  • Write one sentence explaining logistic regression.
  • Create a simple dataset and train a linear regression model.
  • Train a logistic regression model on a binary dataset.
  • Explain why logistic regression uses sigmoid.
  • Compute MSE for a small set of predictions.
  • Compute cross entropy for two classes.
  • List two regression tasks and two classification tasks.
  • Plot a line from linear regression using matplotlib.
  • Test logistic regression with different feature inputs.

Conclusion

Linear regression predicts numbers. Logistic regression predicts classes. Both models help build strong foundations for ML practice.

Linear regression كيحسب قيم رقمية. Logistic regression كيعطي classes. بجوج مهمين باش تفهم ML مزيان.

Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.

Blog Archive