Fine Tuning vs Parameter Efficient Fine Tuning

Fine Tuning vs Parameter Efficient Fine Tuning

Fine Tuning vs Parameter Efficient Fine Tuning

Fine tuning and Parameter Efficient Fine Tuning are two methods used to adapt large models to new tasks. Both change model behavior, but they use different training strategies.

What Is Fine Tuning

Fine tuning updates all model weights. You start from a pretrained model and train it on a new dataset. This creates a strong task specific model.

How It Works

  • Load a pretrained model.
  • Train on task data.
  • Update all parameters.
  • Save the full model.

Strengths

  • High performance
  • Full control over the model
  • Strong adaptation to the new domain

Limitations

  • High compute cost
  • Large memory needs
  • Slow training

What Is Parameter Efficient Fine Tuning

Parameter Efficient Fine Tuning updates only a small part of the model. The rest stays frozen. This reduces training cost and memory needs.

Common PEFT Methods

  • LoRA
  • Adapters
  • Prefix tuning
  • Prompt tuning

How PEFT Works

  • Freeze the main model.
  • Add small trainable modules.
  • Train only these small modules.
  • Keep the core weights untouched.

Strengths

  • Low compute
  • Fast training
  • Small storage size

Limitations

  • Lower flexibility than full fine tuning
  • Task performance can depend on tuning type

Main Differences

Aspect Fine Tuning PEFT
Updated Parameters All weights Small modules
Compute Cost High Low
Memory Need Large Small
Flexibility High Medium
Use Case Large training budgets Lightweight adaptation

When To Use Each Method

Use Fine Tuning When

  • You have strong compute resources
  • You need full control
  • You target maximum accuracy

Use PEFT When

  • You have limited compute
  • You want fast experimentation
  • You need small and portable models

Fine Tuning vs PEFT in Moroccan Darija

Fine tuning kayupdate l model kaml. PEFT kayupdate ghir parte sghira men l model. L hadaf howa nkhdmo b cost w memory sghirin.

Fine Tuning

  • Kayupdate kolchi.
  • Performance qaouiya.
  • Cost kbir.

PEFT

  • Kayfreeze l model.
  • Kayzid modules sgharin.
  • Training sahl w rapide.

Conclusion

Fine tuning changes all weights for maximum control. Parameter Efficient Fine Tuning updates small modules to save compute. Both methods help you adapt models to new tasks with clear benefits.

Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.

Blog Archive