Machine Learning Roadmap

Machine Learning Roadmap

Machine Learning Roadmap

Introduction

This roadmap gives simple steps to learn Machine Learning. It guides beginners and students through clear stages from basics to projects. Next, you move step by step with practical actions.

بهاد ال roadmap غادي تبدا ف طريق machine learning ب خطوات واضحين. خطوة ب خطوة حتى توصل لمستوى زوين.

1. Learn the Basics

Start with the core ideas. Build a strong base.

بدا ب الأساسيات. فهم شنو هو machine learning وشنو كيعني تدريب موديل و inference. فهم supervised o unsupervised o reinforcement.

2. Build Math Skills

Math supports every ML model. Learn the parts you need.

  • Linear algebra: vectors, matrices, operations
  • Calculus: derivatives, gradients
  • Probability: distributions and random variables
  • Statistics: mean, variance, correlation

الرياضيات ضرورية. تعلم matrices o vectors o gradients o الاحصائيات باش تبني موديلات قوية.

3. Learn Python

Python drives Machine Learning. Focus on simple and clean code.

  • Write clean scripts
  • Use NumPy and Pandas
  • Practice data manipulation

تعلم Python. استعمل NumPy o Pandas ودر تمارين بزاف باش تولف data manipulation.

4. Learn Data Handling

Good data improves model performance.

  • Clean datasets
  • Fix missing values
  • Normalize values
  • Split data for training and testing

ال data خاصها تكون نقية. صلح القيم ناقصين. نورماليز القيم. قسم data ل train و test.

5. Learn Core Algorithms

Study classic Machine Learning models.

تعلم algorithms بحال regression o trees o SVM o K-means.

6. Learn Model Evaluation

Measure how your model performs.

  • Accuracy
  • Precision
  • Recall
  • F1 score
  • Confusion matrix
  • Cross validation

قيم الموديل ب accuracy o precision o recall o confusion matrix.

7. Learn Deep Learning

Move to neural networks once your basics are ready.

ملي تفهم ML دخل ل deep learning. تعلم layers o activations o backpropagation واستعمل PyTorch ولا TensorFlow.

8. Build Projects

Projects build skill and confidence.

  • Image classification
  • Sentiment analysis
  • Recommendation systems
  • Time series forecasting

دير مشاريع عملية بحال image classification ولا sentiment analysis باش تقوى فعلاً.

9. Learn MLOps Basics

Deploy and manage your models.

  • APIs
  • Model versioning
  • Monitoring

باش تخدم ف الواقع خصك تدير deployment و monitoring.

10. Stay Updated

ML changes fast. Keep learning new tools.

  • Read new research papers
  • Follow developer blogs
  • Test new tools

machine learning كيتطور بزاف. تبع papers o blogs o tools جداد.


Syntax or Model Structure Example

Below is a simple Python example for training a model.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

data = pd.read_csv("data.csv")
X = data[["feature1", "feature2"]]
y = data["target"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LinearRegression()
model.fit(X_train, y_train)

score = model.score(X_test, y_test)
print("Model score:", score)

هادا مثال بسيط باش تربّي model ب LinearRegression.

Exercises

  • Define supervised learning in one short sentence.
  • Explain the role of gradients.
  • Write a small Python script that loads a CSV file.
  • Create a NumPy array and compute its mean.
  • Train a decision tree on any small dataset.
  • List three activation functions.
  • Plot a confusion matrix for any model.
  • Do a train test split with different ratios.
  • Train a simple neural network with PyTorch.
  • Deploy a small model with a local API.

دابا حاول تجاوب على هاد التمارين. غادي تعاونك تبني أساس قوي.

Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.

Blog Archive