Explainable AI (XAI)

Explainable AI (XAI) Tutorial

Introduction

Explainable AI (XAI) refers to techniques and methods that help humans understand and trust the decisions made by artificial intelligence systems. It focuses on making models transparent, interpretable, and accountable. As AI systems become more complex, XAI helps ensure fairness, safety, and compliance.

بالعربية المغربية (الدارجة): الذكاء الاصطناعي القابل للتفسير (XAI) هو مجموعة ديال الطرق اللي كتخلي الناس يفهمو كيفاش النموذج كيدير القرارات ديالو. الهدف هو الشفافية والعدالة باش نقدر نثقو فالنظام الذكي.

Why Explainable AI is Important

  • Builds trust between humans and AI systems.
  • Helps detect bias and unfair decisions.
  • Improves debugging and model performance.
  • Supports legal and ethical compliance.
  • Enhances decision-making in sensitive domains (healthcare, finance).

بالعربية المغربية: XAI مهم حيت كيعطينا الثقة فالنموذج، كيساعدنا نكتاشفو الأخطاء، وكيفيد فالمجالات الحساسة بحال الطب والبنوك.

Core Concepts Explained

  • Interpretability: How easily a human can understand the model’s logic.
  • Transparency: How clearly the inner workings of the model are visible.
  • Post-hoc Explanation: Explaining decisions after the model has made predictions.
  • Feature Importance: Identifying which input variables most affect predictions.

Types of Explainability

TypeDescriptionExample Methods
GlobalExplains the entire model behaviorFeature Importance, Partial Dependence Plots
LocalExplains a single predictionLIME, SHAP

بالعربية المغربية: كاين تفسير شامل (Global) اللي كيبين كيفاش النموذج كيتصرف فالمجمل، وتفسير محلي (Local) اللي كيركّز على تفسير قرار واحد فقط.

Python Example: Explainable AI with LIME


# Install LIME if not installed
# pip install lime scikit-learn

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from lime.lime_tabular import LimeTabularExplainer

# Load dataset
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Create LIME explainer
explainer = LimeTabularExplainer(X_train, feature_names=['sepal_length','sepal_width','petal_length','petal_width'], class_names=['setosa','versicolor','virginica'], discretize_continuous=True)

# Explain one prediction
i = 3
exp = explainer.explain_instance(X_test[i], model.predict_proba)
exp.show_in_notebook(show_table=True)

Explanation of the Example

  • The Random Forest model predicts flower species.
  • LIME explains why the model made a specific prediction.
  • It shows which features contributed most to that decision.

بالعربية المغربية: هاد المثال كيدير تدريب على بيانات الزهور. من بعد LIME كيعطينا تفسير مفصل لقرار النموذج، وكيورينا شنو هما الميزات اللي كانو مؤثرين بزاف فالتصنيف.

Another Example: Using SHAP for Feature Importance


# Install SHAP if not installed
# pip install shap

import shap

# Create SHAP explainer
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

# Plot feature importance
shap.summary_plot(shap_values, X_test, feature_names=['sepal_length','sepal_width','petal_length','petal_width'])

Explanation of the SHAP Example

  • SHAP uses game theory to explain model predictions.
  • It shows how each feature pushes the prediction higher or lower.
  • The summary plot visualizes global feature importance.

بالعربية المغربية: SHAP كيعتمد على نظرية الألعاب باش يشرح القرارات. كيعطينا فكرة على شنو المميزات اللي رفعو القيمة ولا نقصوها، وكيعطي رسم بياني واضح للميزات المهمة.

Best Practices for Explainable AI

  • Choose interpretable models for critical systems (e.g., linear models, decision trees).
  • Use post-hoc explainers like LIME or SHAP for complex models.
  • Communicate explanations in simple terms to end-users.
  • Validate explanations with domain experts.
  • Regularly test for bias and fairness.

10 Exercises for Practice

  1. Define Explainable AI and its importance in real-world systems.
  2. Differentiate between interpretability and transparency.
  3. Implement a simple interpretable model (e.g., Decision Tree) and visualize feature importance.
  4. Install and use LIME to explain one prediction.
  5. Install and use SHAP to analyze feature contributions globally.
  6. Compare explanations from LIME and SHAP for the same model.
  7. Create a visualization that shows bias in model predictions.
  8. Explain one AI decision to a non-technical user in simple language.
  9. Evaluate how explainability affects model trust and fairness.
  10. Document your explainability process for model governance.
Share:

Ai With Darija

Discover expert tutorials, guides, and projects in machine learning, deep learning, AI, and large language models . start learning to boot your carrer growth in IT تعرّف على دروس وتوتوريالات ، ومشاريع فـ الماشين ليرنين، الديب ليرنين، الذكاء الاصطناعي، والنماذج اللغوية الكبيرة. بّدا التعلّم باش تزيد تقدم فـ المسار ديالك فـ مجال المعلومات.